Discourse Relation Sense Classification Using Cross-argument Semantic Similarity Based on Word Embeddings

نویسندگان

  • Todor Mihaylov
  • Anette Frank
چکیده

This paper describes our system for the CoNLL 2016 Shared Task’s supplementary task on Discourse Relation Sense Classification. Our official submission employs a Logistic Regression classifier with several cross-argument similarity features based on word embeddings and performs with overall F-scores of 64.13 for the Dev set, 63.31 for the Test set and 54.69 for the Blind set, ranking first in the Overall ranking for the task. We compare the feature-based Logistic Regression classifier to different Convolutional Neural Network architectures. After the official submission we enriched our model for Non-Explicit relations by including similarities of explicit connectives with the relation arguments, and part of speech similarities based on modal verbs. This improved our Non-Explicit result by 1.46 points on the Dev set and by 0.36 points on the Blind set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Base Unification via Sense Embeddings and Disambiguation

We present KB-UNIFY, a novel approach for integrating the output of different Open Information Extraction systems into a single unified and fully disambiguated knowledge repository. KB-UNIFY consists of three main steps: (1) disambiguation of relation argument pairs via a sensebased vector representation and a large unified sense inventory; (2) ranking of semantic relations according to their d...

متن کامل

Implicit Discourse Relation Recognition with Context-aware Character-enhanced Embeddings

For the task of implicit discourse relation recognition, traditional models utilizing manual features can suffer from data sparsity problem. Neural models provide a solution with distributed representations, which could encode the latent semantic information, and are suitable for recognizing semantic relations between argument pairs. However, conventional vector representations usually adopt em...

متن کامل

Do Multi-Sense Embeddings Improve Natural Language Understanding?

Learning a distinct representation for each sense of an ambiguous word could lead to more powerful and fine-grained models of vector-space representations. Yet while ‘multi-sense’ methods have been proposed and tested on artificial wordsimilarity tasks, we don’t know if they improve real natural language understanding tasks. In this paper we introduce a multisense embedding model based on Chine...

متن کامل

Improve Chinese Word Embeddings by Exploiting Internal Structure

Recently, researchers have demonstrated that both Chinese word and its component characters provide rich semantic information when learning Chinese word embeddings. However, they ignored the semantic similarity across component characters in a word. In this paper, we learn the semantic contribution of characters to a word by exploiting the similarity between a word and its component characters ...

متن کامل

A Minimalist Approach to Shallow Discourse Parsing and Implicit Relation Recognition

We describe a minimalist approach to shallow discourse parsing in the context of the CoNLL 2015 Shared Task.1 Our parser integrates a rule-based component for argument identification and datadriven models for the classification of explicit and implicit relations. We place special emphasis on the evaluation of implicit sense labeling, we present different feature sets and show that (i) word embe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016